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Let X Be a set with structure. A symmetry is a permutation
f: X — X that preserves the structure.

The syvmmetries of a araph preserve the edae relation

Is every aroup a set of syvmmetries?

Is every (compact) Quantum aroup a.. Oof Quantum
symmetries?
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Quantum Permutation Groups

A maaic unitary ue My(C(X)):
W:u;:@; Z“M:Z”HZHX
k k
Wana’'s Quantum permutation aroup:
C(Sy) :=C"(ujj: uan NxN maaic unitary),

A(u,-j) = Z Uik ® Uj.
k

[# C(G) is a unital C*-alaerra cenerated By 8 maaic unitary
u€e My(C(G)) such that A is a ¥-homomorphism, then

Gs Sy

G is 8 Quantum permutation aroup, with fundamental maaic
representation u.
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Finite Graphs and Quantunm Automorphism

A finite araph is a pair X =(V,E), where V ={1,...,N},and E
syvmetric and irreflexive relation on V with matrix d and
has a @uantum automorphismv aroup (B:

C(G*(X)) = C(S})/<ud = du).

uju #0 = [(j,) e E = (i, k)€ E].
In $act, for maaic unitary u:

ud=du < (1).

I# G Sy is aiven By ue My(C(G)) and ud = du then write:

G X.

X — G"(X) Vs G— {Xg: G Xo}

=)
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Emredded CMRG vs Arstract CQRG
Consider ea. the Kac—Paljutkin Quantum aroup:

C(Gp)=CfeCheCheClye My (C);
fitfh f3+f p h-p

f3 + 14 f1+f Iy —

+ ia Gy ._ 3+ 14 1+f h-p p

G0C54 Vvia u — pT Iz—pT ﬁ_+f3 f2+ﬂ‘
h-p" pT  Hhtf fit+h

Goc S, acts on the followina:

Need to consider (Modulo some euivalence) all empeeddings
of Gpc 5;\'1.
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Frucht Questions

Theorem (Fruckt): For all finite aroups G, there exists a
araph X such that:

G(X)=G.

Question: Does the same hold £for Quantum permutation
aroups?

Definition: A Quantum permutation aroup G has the
Fruckt property if 3X such that:

G*(X)=G.
11§ N<3, GH(X)=G(X) = G*(s)=271, G*(:) =272, G*(A) = S3,
2. G+(::)=SI,
3. GH(O)=H;,
4. G*(:)=Dw

The first example of a 'aenuine’ finite Quantum aroup with
the Frucht property was exhigited recenttly (dual of an order
256 non-arelian aroup) [R.S].
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Oreits [(BiH MR B[]

Assume 6~ X By ue My(C(G)).

Definition: Define an eauivalence relation on {1,..., N}

i~1j < uj#0.

Can relarel V =1{1,...,N} so that:

ol 0 0
u= 0 0
il | B8 1

Blocks uP e My,(C(G)) are transitive maaic representations,

and each corresponds to a Block VFE"') c V. The entries of
wh,..., uk} aenerate C(G).



Group duals T c Sy

Claim: Any such T' comes from Zy, *---*Zp, —T OF the form:

u=diag(u®t,..., us).
For each g, €T the maaic unitary ué = (u}7) is as follows,
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UrES N Z w 8p - (2)
P m=1

These are circulant, and we will see examples on the next
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Group duals T < Sh

Claim: Any such T comes from Zy, *---*Zpy, — T OF the form:

u=diag(u®t,..., us).

For each g, €T the maaic unitary ué = (u}7) is as follows,
with w =2/ Np.

8p 1 L (k=I)m _.m

Uy == N Z w &p - (2)
P m=1

These are circulant, and we will see examples on the next

pa&e.

Claim (N: Every transitive (all ujj #0) maaic representation of
cocommutative C(I') of this 'Fourier—type’.

For finite G,the dlassical version of G has order equal to
the nuwveer of one dimensional representations of G.
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Bichon’s Group Dual 7, * Z3 St
Let ZyxZ3=1(a,bla®=1,b3=1). Define:

C(Z2+Z3):=C(Z2+13) .

We can form a fundamental maaic representation
ue Ms(C(Zy +Z3)) using 'Fourier—type’ transitive maaic
representations. Where w = exp(27i/3)

)

us==
2le—a e+a

1( e+ b+ b2 e+w?b+wh? e+wb+w2b2)

R 1(e+a e—a

b

= e+wb+w?b? e+ b+ b2 e+w?b+wb?

e+w?b+wb® e+wb+w?b? e+b+ b2

we have Zp xZ3 < S via:
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Uncountarly many Quantum permutation aroups

7y % 73 is SQ-universal: if A is a8 countarle aroup
AcST where 7«73 —T.

This implies Zy x Z3 has uncountarly many Quotients.
Quotients Z; x Z3 — T correspond tO Quantum suBGroups
rczy«7;.

Conclusion: m has uncountarly many QUaNtuMm sSURBGIroups:

— |{Quantum permutation aroups}| > |{finite araphs}|
= = "Quantum Fruckht Theorem".

Unsatisfactory.



A Map Of compact Quantum Groups

The set of finite Quantum aroups is countarle [S].
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Oreitals
Det [LMR]: Define an equivalence relation on {1,..., N}2:

(i, k) ~2 (j,]) = ujjui #0.

For all dlasses o: 0S Ay, v OF 0SA§

.....

.y Let O e set of
orgitals disjoint of the diaconal relation

Reocall: uju 20 = [(i,k) e E <= (j,/) € E]

— (oUo})cE or (ouo!)cE.

Theorem I: [# G~ X with ue My(C(G)) then JA< O:

E=J(ouo™).

o€A



Oreitals
Det [LMR]: Define an equivalence relation on {1,..., N}2:

(i, k) ~2 (j,!) = ujjui #0.

For all dlasses o: oS Ay, v OF 0SA§

.....

.y Let O e set of
orgitals disjoint of the diagonal relation.

Reocall: uju 20 = [(i,k) e E = (j,/) € E].

= (oUo})cE or (ouo ') E".

Theorem I: I# G~ X with ue My(C(G)) then JA< O:

E=J(ouo™).

o€eA

I# 0€Sy and for all ouo €O

(0 x0)(ouo ) =ouo! = g€ G(X).



Example: a 3} S,

Where o =exp(27i/3) and o = (123):

(12) _ % (e+ (12) e- (12))

u "
e—(12) e+(12)
: e+0+02 e+w?o+wo? e+wo+wo?
(123) _ 2 2 2 2 2
u =—|léet+two+w-o e+o+o e+w o+wo
e+(,020'+(1)0'2 e+(1)0'+(1)20'2 e+0+02

u(12) 0]
ey T @25y

The orsitals disjoint of Aj 5 are:

o1 ={(1,2),(2,1)}
0U05 " = (11,2} x {3,4,5}) U (13,4,5} x {1,2})
03U03" =1(3,4),(4,5),(5,3),(4.3),(5.4), (3,5))
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Example: a 3} <Sg

Theorem | thus aives eiaht araphs on five vertices that this
Sz S acts on:

Each adwits a Z, x S3 action. But the dlassical version of S3
is VAY

G*(X)=5; = G(X)=2,.
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Total aroup duals

Dedtinition: For GA X: uP=ud < o luPo =u9.
Dedfinition: T is total if I is FGEFO and

uP U89 =0 = ubr = U,
iy Tkl

Examples: 3} ,ﬁz, AA5

For total T: u # ué associated with Blocks Vj, Vo< V:

Vpx Vg, Vg x Ve 0.
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Group duals

Can show if T~ X, each Block V), of size N, takes a Zy,
action. The oreitals oc V, x V, disjoint of the diagonal
relation are, for /=1,...,N, -1

or={(i,j):j—i mod Np=1}.

For example, if N, =6 we have oUo 1 of the form:

Each takes a Zg action.
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Maaic representations in the fundamental representation.
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[# N, =3 and u’» appears with multiplicity m, =1, the copy of 73
can Be replaced By Ss.
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Total duals with classical versions 7,

Theorem: Suppose that total T~ X. Let T'y ={y1,...,7k} Be the
set of elements of T appearing as Fourier—type transitive
MaaGic representations in the fundamental representation.
Then, where y1,...,yx are of order Ni,..., N,

AN, ><-~><ZNkf\X.

1

[# N, =3 and u'? appears with multiplicity m, =1, the copy of Z3
can Re replaced Ry Ss.

Proposition: [# finite T is non-agelian, has a prime p one
dimensional representations (or p=1),and T is total, then T
does not have the Frucht property.

Proos: 1§ G*(X) =T then G(X)=2Zp But if T~ X, then

Zn X---XZNkQZp.

1
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Total aroup duals without the Frucht property

Theorem/Corollary: The finite duals S3, Az, and Az do not
have the Frucht property.

Proo#: Total with dassical versions Z», Z3, and Zj.

Proposition: [# 8 non-agelian total diserete aroup dual T'~ X,
then the dual of a free product

Zn, % x 2y, X

1

Therefore no finite non-arelian total aroup dual has the
Frucht property.

Proos: Replace the cenerators of T appearing in
ue My(C(T)) with free generators of same order.

C#. Schmidt, Quantum automorphismvs of folded cure
araphs, Th2.2.
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Kac—Paljutkin Gy does not have Frucht property

R ecall
C(Gy)=CHeChaCheCfye My (C).

There are six transitive maaic representations:

G
ul,w, Xz, 1g,

dim. four  dim. two dim. one

[§ Go~ X, then u® must appear, and u® Blocks take a Dj
action:

K is possikle to extend the action to all Blocks that respects
all oreitals, ie. Dy~ X. But Gpgass = Zo x Z>.



Epiloaue
Suppose G(X) < Sy with we My(C(G(X))) where

w= (Lm0 L=i(0) =8i6()-



Epiloaue
Suppose G(X) < Sy with we My(C(G(X))) where
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Epiloaue
Suppose G(X) s Sy with we My(C(G(X))) where

w=(Li-)ie 0 L=i(0) =8i6()-

I# wjjwi #0, exists pure state ev, € S(C(G(X))) such that:

evo(1j_il_g)=1
= [o(/)=k]n[o(j) =]
— [(j, 1) € E-== (i k)],

How to think aBout random automorphisms ve S(C(G(X)))?
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Epiloaue
For example, ve S(C(G(O))):

Measure with:

x(1) =1wqy +2wo1 +3wsg + 4w



Epiloaue
For example, ve S(C(G(D))):

Measure with:
x(1) =1wqq +2wo1 +3wsy +4wag : P[v(1) = k] = v(wk1).
Say v(1) =2 then random automorphism collapses to

et V(W21-W21) )
NOBY. S e e
V(W21)

nid ¥ . /.
wo1v/(3) wo1v(4)
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Epilogue

We can play the same aame with Quantum automorphisms
aka 9 e S(C(G*(X))). In @eneral no joint distrigutions.. But
you ean replace these with seQuential measurements such as:

[x(j2) > x(j1)] With values in {1,..., N}2,

ie. measure ¢ with x(j1), record ¢(j1), then collapse
P Uy(j)a ¢ @Nd Measure this with x(j2).

Along with not all joint distrirutions Being defined:

[x(2) > x(j1)] # [x(1) > x(i2)]-



Epilogue

We can play the same aame with Quantum automorphisms
aka 9 e S(C(G*(X))). In @eneral no joint distrisutions.. But
you can replace these with seQuential measurements such as:

[x(j2) > x(j1)] With values in {1,...,N}?,

ie. measure ¢ with x(j1), record ¢(j1), then collapse
P Uy(jp)n ¢ @Nd Measure this with x(j2).

Along with not all joint distrirutions Being defined:

[x(2) > x(a)] # [x(1) > x(2)]-

I# you measure x(j) > x(/) with pe S(C(G*(X))), and £ind
[p(j) = i]> [p(1) = k], then:

Plle() =il > [p(/) = k]| >0 = @(uujjuk) >0
= ujju #0 = [(j,/) e E' = (i,k)€E]



Epilogue

Teke Gy < G*(Il) via mo: C(G*(11)) = C(Go), uyj— u®:
e e p h-p

460 = Gt +H0, bh—p p
' - T A+f h+fy

p h-p
h-pT pT  hHh+fy A+f



Epilogue

Teke G < G*(Il) via mo: C(G*(11)) = C(Go), uj— u®:

h+th f3+fy p h-p

460 = fa+fa f+fp h-p p
' pT  h-pT A+ Hh+fy
h-pT  pT  hHh+fy A+f

A state ¢ge S(C(Gp)) defines a Quantum automorphism of |I:

Y =¢oono,




Epilogue

£ measurement of ¢ with x(1) yields ¢(1) € {0,1}, centrality of

G
Uy u2° implies that 7,119 is 8 random automorphism in

7o x7>.



Epilogue

[# measurement of ¢ with x(1) yields ¢(1) € {0,1}, centrality of

Zlcf ) 220 implies that 1) 19 is 8 random automorphism in
2x22

However i ¢(1) € (3,4}, then G (1)1 is truly’ Quantum:




Epilogue

[# measurement of ¢ with x(1) yields ¢(1) € {0,1}, centrality of
u1G1°, u2c;10 implies that 1) 19 is 8 random automorphism in

7y x 3.

However i ¢(1) € (3,4}, then G,(1) 1 is truly’ Quantum:

- P10(3) = 2).

N =

Pluzig(3) =1] =

And this persists:

- Pla3BIe(1) = 4]

N =

Plas T 0(1) = 3] =



Epilogue

¢ Measurer\ner\—t of ¢ with x(1) yields ¢(1) € {0,1}, centrality Of

fo, 221 implies that 1) 1¢ is 8 random automorphism in
2% 23

However i ¢(1) € {3,4}, then G,(1) 1 is truly’ Quantum:

1

Plazie(3) =1] = 5 =Pluz19(3) = 2].
And this persists:
S 1
Plostzip(l) =3] = 5 =Pluzuzie(l) =4].

Can osserve: [p(1)=4] > [p(3) = 1] > [p(1) = 3]



Epilogue

For G*(X)= Gp, the arelianisation Z; x Z5 c Gy

fasee Bifs .- p  b-—p hh+fo f3+fs 0 0
Sl ih = b-0.- R+fa fithr 0 0
Ro D Ll 0 0. fithy Hhth
h-pT pT  hK+fa A+f3 0 0 h+fy fi+h

implies, toaether with ea. p(lh—p’)#0, that dassical
symmetries are missing.

The centrality of the f; implies Quantumness is missing too.
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