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Symmetry

Let X be a set with structure. A symmetry is a permutation

f :X →X that preserves the structure.

The symmetries of a graph preserve the edge relation.

Is every group a set of symmetries?

Is every (compact) quantum group a... of quantum

symmetries?
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Quantum Permutation Groups

A magic unitary u ∈MN(C (X)):

uij = u∗ij = u2ij ;
∑
k

uik =∑
k

ukj =1X.

Wang’s quantum permutation group:

C (S+
N) := C∗(uij : u an N ×N magic unitary),

∆(uij )=
∑
k

uik ⊗ukj .

If C (G) is a unital C∗-algebra generated by a magic unitary

u ∈MN(C (G)) such that ∆ is a *-homomorphism, then

G⊆ S+
N ;

G is a quantum permutation group, with fundamental magic

representation u.
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Finite Graphs and Quantum Automorphism

A finite graph is a pair X = (V ,E ), where V = {1, . . . ,N}, and E a

symmetric and irreflexive relation on V with matrix d

and

has a quantum automorphism group [B]:

C (G+(X ))=C (S+
N)/〈ud = du〉.

uijukl ̸= 0 =⇒ [(j , l) ∈E ⇐⇒ (i ,k) ∈E ]. (1)

In fact, for magic unitary u:

ud = du ⇐⇒ (1).

If G⊆ S+
N is given by u ∈MN(C (G)) and ud = du then write:

GæX .

X →G+(X ) vs G→ {Xα : GæXα}.
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Embedded CMQG vs Abstract CQG

Consider e.g. the Kac–Paljutkin quantum group:

C (G0)=Cf1⊕Cf2⊕Cf3⊕Cf4⊕M2(C);

G0 ⊂ S+
4

via uG0 :=


f1+ f2 f3+ f4 p I2−p
f3+ f4 f1+ f2 I2−p p
pT I2−pT f1+ f3 f2+ f4

I2−pT pT f2+ f4 f1+ f3



G0 ⊂ S+
4

acts on the following:

Need to consider (modulo some equivalence) all embeddings

of G0 ⊂ S+
N .
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Frucht Questions

Theorem (Frucht): For all finite groups G , there exists a

graph X such that:

G (X )∼=G .

Question: Does the same hold for quantum permutation

groups?

Definition: A quantum permutation group G has the

Frucht property if ∃X such that:

G+(X )∼=G.

1. If N ≤ 3, G+(X )=G (X ) =⇒ G+(•)=Z1, G+(:)=Z2, G+(∆)= S3,
2. G+(::)= S+

4
,

3. G+(□)=H+
2
,

4. G+(| :)= D̂∞ .

The first example of a ‘genuine’ finite quantum group with

the Frucht property was exhibited recently (dual of an order

256 non-abelian group) [RS].
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Orbits [Bi,H,LMR,BF]

Assume GæX by u ∈MN(C (G)).

Definition: Define an equivalence relation on {1, . . . ,N}

i ∼1 j ⇐⇒ uij ̸= 0.

Can relabel V = {1, . . . ,N} so that:

u =

u
1 0 0

0
. . . 0

0 0 uk

 .

Blocks up ∈MNp (C (G)) are transitive magic representations,

and each corresponds to a block V
(m)
p ⊆V . The entries of

{u1, . . . ,uk } generate C (G).
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Group duals Γ̂⊆ S+
N

Claim: Any such Γ̂ comes from ZN1
∗·· ·∗ZNk

→ Γ of the form:

u = diag(ug1 , . . . ,ugk ).

For each gp ∈ Γ the magic unitary ugp = (u
gp
kl
) is as follows,

with w = e2πi/Np :

u
gp
kl

= 1

Np

Np∑
m=1

w (k−l)mgm
p . (2)

These are circulant, and we will see examples on the next

page.

Claim (!): Every transitive (all uij ̸= 0) magic representation of

cocommutative C (Γ̂) of this ‘Fourier-type’.

For finite G , the classical version of Ĝ has order equal to

the number of one dimensional representations of G .
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Bichon’s Group Dual áZ2∗Z3 ⊂ S+
5

Let Z2∗Z3 = 〈a,b |a2 = 1,b3 = 1〉.

Define:

C (áZ2∗Z3) :=C(Z2∗Z3)τ.

We can form a fundamental magic representation

u ∈M5(C (áZ2∗Z3)) using ‘Fourier-type’ transitive magic

representations. Where ω= exp(2πi/3)

ua = 1

2

(
e+a e−a
e−a e+a

)
,

ub = 1

3

 e+b+b2 e+ω2b+ωb2 e+ωb+ω2b2
e+ωb+ω2b2 e+b+b2 e+ω2b+ωb2
e+ω2b+ωb2 e+ωb+ω2b2 e+b+b2

 ,

we have áZ2∗Z3 ⊂ S+
5

via:

u :=
(
ua 0

0 ub

)
.
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Uncountably many quantum permutation groups

Z2∗Z3 is SQ-universal: if Λ is a countable group

Λ⊆ Γ where Z2∗Z3→ Γ.

This implies Z2∗Z3 has uncountably many quotients.

Quotients Z2∗Z3→ Γ correspond to quantum subgroups

Γ̂⊆ áZ2∗Z3 .
Conclusion: áZ2∗Z3 has uncountably many quantum subgroups:

=⇒ |{quantum permutation groups}| > |{finite graphs}|
=⇒¬ “Quantum Frucht Theorem”.

Unsatisfactory.
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A map of compact quantum groups

The set of finite quantum groups is countable [S].



Orbitals

Def [LMR]: Define an equivalence relation on {1, . . . ,N}2 :

(i ,k)∼2 (j , l) ⇐⇒ uijukl ̸= 0.

For all classes o : o ⊆∆{1,...,N} or o ⊆∆C
{1,...,N} . Let O be set of

orbitals disjoint of the diagonal relation.

Recall: uijukl ̸= 0 =⇒ [(i ,k) ∈E ⇐⇒ (j , l) ∈E ].

=⇒ (o∪o−1)⊆E or (o∪o−1)⊆E c .

Theorem 1: If GæX with u ∈MN(C (G)) then ∃A⊆O :

E = ⋃
o∈A

(o∪o−1).

If σ ∈ SV and for all o∪o−1 ∈O
(σ×σ)(o∪o−1)= o∪o−1 =⇒ σ ∈G (X ).
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Example: a Ŝ3 ⊂ S+
5

Where ω= exp(2πi/3) and σ= (123):

u(12) = 1

2

(
e+ (12) e− (12)
e− (12) e+ (12)

)

u(123) = 1

3

 e+σ+σ2 e+ω2σ+ωσ2 e+ωσ+ω2σ2
e+ωσ+ω2σ2 e+σ+σ2 e+ω2σ+ωσ2
e+ω2σ+ωσ2 e+ωσ+ω2σ2 e+σ+σ2


u :=

(
u(12) 0

0 u(123)

)

The orbitals disjoint of ∆{1,...,5} are:

o1 = {(1,2),(2,1)}

o2∪o−1
2

= ({1,2}× {3,4,5})∪ ({3,4,5}× {1,2})

o3∪o−1
3

= {(3,4),(4,5),(5,3),(4,3),(5,4),(3,5)}



Example: a Ŝ3 ⊂ S+
5

Theorem 1 thus gives eight graphs on five vertices that this

Ŝ3 ⊂ S+
5

acts on:

Each admits a Z2×S3 action. But the classical version of Ŝ3
is Z2 :

G+(X )= Ŝ3 =⇒ G (X )=Z2.
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Total group duals

Definition: For GæX : up ≡ uq ⇐⇒ σ−1upσ= uq .

Definition: Γ̂ is total if Γ is FGEFO and

u
gp
ij u

gq
kl

= 0 =⇒ ugp ≡ ugq .

Examples: Ŝ3, Â4, Â5 .

For total Γ̂: ugp ̸≡ ugq associated with blocks Vp ,Vq ⊂V :

Vp ×Vq , Vq ×Vp ∈O .
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Group duals

Can show if Γ̂æX , each block Vp of size Np takes a ZNp

action.

The orbitals o ⊂Vp ×Vp disjoint of the diagonal

relation are, for l = 1, . . . ,Np −1

ol = {(i , j) : j − i modNp = l }.

For example, if Np = 6 we have o∪o−1 of the form:

Each takes a Z6 action.
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Total duals with classical versions Zp

Theorem: Suppose that total Γ̂æX . Let Γu = {γ1, . . . ,γk } be the

set of elements of Γ appearing as Fourier-type transitive

magic representations in the fundamental representation.

Then, where γ1, . . . ,γk are of order N1, . . . ,Nk ,

ZN1
×·· ·×ZNk

æX .

If Np = 3 and uγp appears with multiplicity mp = 1, the copy of Z3
can be replaced by S3 .

Proposition: If finite Γ is non-abelian, has a prime p one

dimensional representations (or p = 1), and Γ̂ is total, then Γ̂

does not have the Frucht property.

Proof: If G+(X )= Γ̂ then G (X )=Zp : but if Γ̂æX , then

ZN1
×·· ·×ZNk

⊆Zp .
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Total group duals without the Frucht property

Theorem/Corollary: The finite duals Ŝ3, Â4, and Â5 do not

have the Frucht property.

Proof: Total with classical versions Z2, Z3, and Z1 .

Proposition: If a non-abelian total discrete group dual Γ̂æX ,

then the dual of a free product

áZN1
∗ . . .∗ZNk

æX .

Therefore no finite non-abelian total group dual has the

Frucht property.

Proof: Replace the generators of Γ appearing in

u ∈MN(C (Γ̂)) with free generators of same order.

Cf. Schmidt, Quantum automorphisms of folded cube

graphs, Th.2.2.
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Kac–Paljutkin G0 does not have Frucht property

Recall

C (G0)=Cf1⊕Cf2⊕Cf3⊕Cf4⊕M2(C).

There are six transitive magic representations:

uG0 ,w︸ ︷︷ ︸
dim. four

, x ,y ,z︸ ︷︷ ︸
dim. two

, 1G0︸︷︷︸
dim. one

.

If G0æX , then uG0 must appear, and uG0 blocks take a D4

action:

It is possible to extend the action to all blocks that respects

all orbitals, i.e. D4æX . But G0,class =Z2×Z2 .
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Epilogue

Suppose G (X )⊆ SN with w ∈MN(C (G (X ))) where

w = (1j→i )
N
i ,j=1 : 1j→i (σ)= δi ,σ(j).

If wijwkl ̸= 0, exists pure state evσ ∈ S(C (G (X ))) such that:

evσ(1j→i1l→k)= 1

=⇒ [σ(l)= k]∩ [σ(j)= i ]

=⇒ [(j , l) ∈E ⇐⇒ (i ,k) ∈E ].

How to think about random automorphisms ν ∈ S(C (G (X )))?
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Epilogue

For example, ν ∈ S(C (G (□))):

Measure with:

x(1)= 1w11+2w21+3w31+4w41 : P[ν(1)= k]= ν(wk1).

Say ν(1)= 2 then random automorphism collapses to

w̃21ν=
ν(w21 ·w21)

ν(w21)
:
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Epilogue

We can play the same game with quantum automorphisms

aka ϕ ∈ S(C (G+(X ))).

In general no joint distributions... but

you can replace these with sequential measurements such as:

[x(j2)≻ x(j1)] with values in {1, . . . ,N}2,

i.e. measure ϕ with x(j1), record ϕ(j1), then collapse

ϕ 7→ ãuϕ(j1),j1ϕ and measure this with x(j2).

Along with not all joint distributions being defined:

[x(j2)≻ x(j1)] ̸= [x(j1)≻ x(j2)].

If you measure x(j)≻ x(l) with ϕ ∈ S(C (G+(X ))), and find

[ϕ(j)= i ]≻ [ϕ(l)= k], then:

P[[ϕ(j)= i ]≻ [ϕ(l)= k]]> 0 =⇒ ϕ(ukluijukl )> 0

=⇒ uijukl ̸= 0 =⇒ [(j , l) ∈E ⇐⇒ (i ,k) ∈E .]
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Epilogue

Take G0 ⊆G+(||) via π0 :C (G+(||))→C (G0), uij 7→ uG0

ij :

uG0 :=


f1+ f2 f3+ f4 p I2−p
f3+ f4 f1+ f2 I2−p p
pT I2−pT f1+ f3 f2+ f4

I2−pT pT f2+ f4 f1+ f3



A state ϕ0 ∈ S(C (G0)) defines a quantum automorphism of ||:

ϕ :=ϕ0 ◦π0,
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A state ϕ0 ∈ S(C (G0)) defines a quantum automorphism of ||:

ϕ :=ϕ0 ◦π0,



Epilogue

If measurement of ϕ with x(1) yields ϕ(1) ∈ {0,1}, centrality of

uG0

11
, uG0

21
implies that àuϕ(1),1ϕ is a random automorphism in

Z2×Z2 .

However if ϕ(1) ∈ {3,4}, then àuϕ(1),1ϕ is ‘truly’ quantum:

P[ũ31ϕ(3)= 1]= 1

2
=P[ũ31ϕ(3)= 2].

And this persists:

P[ũ13ũ31ϕ(1)= 3]= 1

2
=P[ũ13ũ31ϕ(1)= 4].

Can observe: [ϕ(1)= 4]≻ [ϕ(3)= 1]≻ [ϕ(1)= 3].
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P[ũ31ϕ(3)= 1]= 1

2
=P[ũ31ϕ(3)= 2].

And this persists:
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Epilogue

If measurement of ϕ with x(1) yields ϕ(1) ∈ {0,1}, centrality of

uG0

11
, uG0

21
implies that àuϕ(1),1ϕ is a random automorphism in

Z2×Z2 .

However if ϕ(1) ∈ {3,4}, then àuϕ(1),1ϕ is ‘truly’ quantum:

P[ũ31ϕ(3)= 1]= 1

2
=P[ũ31ϕ(3)= 2].

And this persists:

P[ũ13ũ31ϕ(1)= 3]= 1

2
=P[ũ13ũ31ϕ(1)= 4].

Can observe: [ϕ(1)= 4]≻ [ϕ(3)= 1]≻ [ϕ(1)= 3].



Epilogue

For G+(X )=G0, the abelianisation Z2×Z2 ⊂G0
f1+ f2 f3+ f4 p I2−p
f3+ f4 f1+ f2 I2−p p
pT I2−pT f1+ f3 f2+ f4

I2−pT pT f2+ f4 f1+ f3

 7→


f1+ f2 f3+ f4 0 0
f3+ f4 f1+ f2 0 0
0 0 f1+ f3 f2+ f4
0 0 f2+ f4 f1+ f3

 ,

implies, together with e.g. p(I2−pT ) ̸= 0, that classical

symmetries are missing.

The centrality of the fi implies quantumness is missing too.
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S Ştefan, The set of types of n-dimensional semisimple

and cosemisimple Hopf algebras is finite, J. Algebra 1997.

Bi Bichon, Algebraic quantum permutation groups,

Asian-Eur. J. Math. 2008.

H Huang, Invariant subsets under compact quantum group

actions, J. Noncommut. Geom. 2016.

LMR Lupini, Mancinska, & Roberson, Nonlocal games and

quantum permutation groups, J. Funct. Anal. 2020.

BF Banica & Freslon, Modelling questions for quantum

permutations, Infin. Dimens. Anal. Quantum Probab.

Relat. Top. 2018.


